
WHITEPAPER

SELinux FOR RED HAT DEVELOPERS
HOW TO USE SELinux POLICIES TO ENHANCE DATACENTER SECURITY

EXECUTIVE SUMMARY

This paper discusses how application developers can use SELinux to
strengthen datacenter security. While system administrators can take
many steps to secure systems, developers can contribute by providing
appropriate SELinux policies as part of the RPM (RPM Package Manager)
containing their application installation.

www.redhat.com

TABLE OF CONTENTS

HOW TO USE SELINUX POLICIES TO ENHANCE DATACENTER SECURITY........................1

THE NEED FOR SECURITY ..3

A LOOK BACK AT THE ROOTS OF SELINUX..3

Working With SELinux.. 4

ARCHITECTURAL CONSIDERATIONS..5

NUTS AND BOLTS OF SELINUX...5

SELINUX BASICS..6

Users.. 6

Roles.. 7

Types.. 7

Type Enforcement File... 7

Contexts... 8

Object classes.. 8

Labels.. 9

SELinux policies.. 9

Policy rules... 9

Interfaces (policy function calls)...10

Attributes... 10

Control writing.. 11

Capability class ... 11

Interface files .. 11

Example: Making Incremental Security Improvements To An Existing Application.................12

Preparation... 12

Step 1: Download and install the myrwhod RPM...13

Step 2: Prepare the system to create a policy module..14

Step 3: Create the initial policy module draft...14

Step 4: Create the final policy module. ..14

Confined users (RBAC)... 17

Confined applications... 21

SELinux modules.. 22

Workflow.. 22

CONCLUSION...22

FOR MORE INFORMATION..23

About The Author.. 23

ADDENDUM...24

SELinux Sandboxing.. 24

www.redhat.com 2

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

THE NEED FOR SECURITY

Mainstream news reports of serious attacks on corporate infrastructure often
underestimate the frequency and scope of breaches, with many organizations
unwilling to expose the extent of the data loss. Executives are concerned, as attacks
pose a significant threat to valuable business information as well as legal and
publicity issues that can affect customer confidence and retention. Companies cannot
afford to be complacent or avoid using proper security features due to cost or
perceived performance trade-offs. Security at all levels is required, from developers
minimizing the potential for risk in their applications, to system administrators
limiting, logging, and monitoring access and keeping systems up to date.

Typically, developers do not see themselves as responsible for system security. When
an application is implicated in a security breech, customers question vendors and the
fallout is hard to ignore. In fact, security failures can create enough upset that
customers consider switching to competing applications.

System administrators continue to play a key role in properly protecting individual
systems and enterprise-wide infrastructure. Developers need to understand the
challenges system administrators face and provide adequate application support so
that keeping deployments secure is feasible, reliable, and consistent.

Today, IT organizations use a variety of methods to secure enterprise infrastructure,
such as sandboxing, isolating environments with virtualization, deploying firewalls,
and performing deep packet inspection. While important, they are not the only
techniques that can help keep systems secure. Security-Enhanced Linux (SELinux)
provides integrated operating system security enhancements at the kernel-level, and
associated tools make it easier to set and enforce security policy decisions.

A LOOK BACK AT THE ROOTS OF SELinux

As early as the 1960s, security-conscious government agencies were concerned with
ensuring security at multiple levels of the hierarchy and infrastructure. Various
systems were developed, with many concepts still germane today.

• Multi-level security (MLS). In MLS environments, different items can have a
different security level. Access can be restricted on a fine-grained basis, with
users limited in what they can access and the actions they can perform, reducing
the risk posed by unauthorized use.

• Discretionary access controls (DAC). Developers are inherently aware of DAC. In
this standard Linux model, permissions set by chmod and chown identify what can
be shared and with whom. Unfortunately, DAC does not identify enough security
levels. As a result subverting systems is easy, with users often gaining access to
far more information and capabilities than needed. In fact, privilege escalation is
common, with users unnecessarily granted root privileges that open up the entire
system.

• Mandatory access controls (MAC). In a MAC system, users cannot grant
permission (or gain permission) that is not within their defined scope. Depending
on the implementation, even root might not be able to perform tasks that have
been proscribed by the system architect. History suggests that MAC systems are

www.redhat.com 3

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

used by a small fraction of datacenters and are perceived as difficult to use in
production settings.

Many legacy systems, such as Multics, Trusted Solaris, and AIX with Trusted
Extensions, provide various forms of MAC. Typically, these systems relied on the role-
based access control (RBAC) model. In this model, specific permissions are attached
to roles rather than users, and even the superuser is prevented from having arbitrary
powers. Users log in (providing an audit trail) and assume a role in order to perform a
task. Role granularity can be broad (providing ample avenues for attackers to gain
traction) or fine-grained (trading ease-of-use for greater access control). While
powerful, RBAC is seldom used effectively in commercial environments.

In 2000, the National Security Agency (NSA) released SELinux, a mechanism and set
of applications that provides very fine-grained MAC support in the Linux kernel, as
well as deployment tools. While RBAC can be implemented using SELinux kernel
facilities, the foundation of the SELinux model controls individual program access
rather than specifying user roles. This is a key paradigm shift, one in which
developers have a key role to play. Developers should provide default policies for
applications that run right out of the box while taking care to minimize the potential
for application hijacking. In addition, appropriate support must be in place to adjust
system policies, for example, through the use of booleans, file labels, and port
definitions, so that system administrators can change installation parameters (such
as file locations) and installation scripts.

Since the release of SELinux by the NSA, Red Hat has been at the forefront of making
this security technology mainstream, developing tools and sample policies, and
contributing them to the Linux community. Red Hat also incorporates the technology
into the commercially supported Red Hat Enterprise Linux operating system. This
document focuses on SELinux in Red Hat Enterprise Linux 6 environments.

Working with SELinux

In the beginning, when SELinux was configured to actively constrain programs, most
applications experienced run-time failures. What was missing were hand-crafted
security policies. Today, system administrators still find it necessary to create
appropriate security policies, as few applications come with defined policy. As a
result, each installation crafts security policies it believes matches application needs,
with policy updates often required for every new software release. When done
incorrectly, resulting security policies are too permissive (allowing exploitation),
overly strict, or simply wrong and can result in unnecessary application failures.

Application developers are in the best position to reliably assert the intent of the
application and to establish default security policy. To help this effort, SELinux
includes a rich set of fundamental protections. Red Hat provides many infrastructure
improvements, enabling application developers to provide appropriate default policies
and common customization scripts. When applications provide greater insight,
system administrators can focus their efforts on securing the underlying
infrastructure, rather than spending time analyzing program behavior and attempting
to confine any potential misbehavior of a compromised program according to security
requirements.

www.redhat.com 4

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

ARCHITECTURAL CONSIDERATIONS

In general, application development tends to focus on performance over
security. While such trade-offs made sense years ago when deployments
were smaller and had little or no network connectivity, times have changed.
It was not uncommon for applications to run as a single process or have
large blocks of code, with network and disk I/O interleaved with
computation. While some designs used data abstraction and hiding, the use
of inlining and inter-procedural analysis by optimizing compilers resulted in
what is effectively a high-performance, monolithic process that might
access any part of the system based on user workflow. Furthermore, few
systems live in isolation. As a result, other systems with which they have a
trust relationship must be tightly secured, or at least configured to contain
any compromise. Failure to do so exposes the entire datacenter.

While still important, performance must not be the sole consideration for the
fundamental architecture of an application. Why? When security is
considered only after architecture and implementation, security tends to be
poor. Applications often end up running in a sandbox or are retrofitted with
security, resulting in additional management complexity. With most
enterprise applications running in networked environments, security
considerations must become an integral part of software architecture.
Fundamental architecture choices dramatically impact the resulting security
of an application, and by extension the infrastructure on which it runs.

NUTS AND BOLTS OF SELinux

For readers new to SELinux, this section explains the jargon, application
programming interfaces (APIs), and fundamental mindset of SELinux.
Readers interested in the theoretical basis of SELinux and the design
rationale of the kernel security features can read The Inevitability of Failure:
The Flawed Assumption of Security in Modern Computing Environments1.

When working with SELinux, the most critical priority is to keep in mind the
principle of least privilege. Least privilege is the notion that programs should
operate with the minimum permissions needed. If a program has a diverse
set of permission requirements, two primary approaches are available:

• Divide the program into smaller cooperating processes, with each
process having its own least-permissive policy

• Use advanced SELinux capabilities

In reality, most developers are faced with an existing code base and do not
have the luxury to re-architect applications around security considerations.
While not ideal, incremental security improvements are feasible. For existing
applications, developers can generate the basis for a default policy and
include it in the RPM. In subsequent releases, developers can adjust the
code and default policy to tighten up permissions. Should the need arise,
both approaches can be used in the same program. Information on building

1 See http://www.nsa.gov/research/_files/selinux/papers/inevit-abs.shtml.

www.redhat.com 5

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

ARCHITECTURAL CONSIDERATIONS

THAT IMPACT SECURITY

Limit where applications perform I/O. If an

application must perform I/O to system space,

use helper applications to perform those tasks.

Restricting I/O to helper applications enables

the core application to run locked down,

keeping inadvertent errors from compromising

the system or providing an attack vector.

Do not create files and directories

prematurely. If locations are dynamic, false

positives can result if the application runs on

a permissively configured system. In locked-

down environments, this can cause

application failures.

Be mindful of execution. Applications that

write code to files and read it in for execution

tend to need open access to systems. In

addition, applications should ensure input is

valid and of appropriate size, rather than

interpreting information.

Bias security policies toward security by

default. Provide administrative options to

weaken security only when needed as a

common best practice.

Make policies part of RPM and

configuration scripts. This keeps system

administrators from having to become experts

at application internals or infer the privileges

required. Provide documentation for existing

applications to help security experts design

confinement scenarios, and use tools such as
sepolgen and audit2allow to create draft

policies. Ensure that testing and quality

assurance (QA) tasks verify policy function

and accommodation of reasonable workloads.

Adopt a least-privilege principle.

Minimizing the number of openings (ports, I/O

channels) and ensuring that every level of the

system can only access the information and

resources needed for operation is key to

closing doors to attackers.

Document security-related

considerations. Providing security experts

with detailed information, such as identifying

spawned helper applications and the

permissions they need to operate, enables

systems to be configured with greater

confidence than when default security policies

are not used.

Provide security-related support.

Removing barriers for administrators to obtain

timely and accurate information quickly is

critical to keeping systems secure.

http://www.nsa.gov/research/_files/selinux/papers/inevit-abs.shtml
http://www.nsa.gov/research/_files/selinux/papers/inevit-abs.shtml
http://www.nsa.gov/research/_files/selinux/papers/inevit-abs.shtml

RPMs can be found at https://access.redhat.com/knowledge/techbriefs/how-
build-rpm.

SELinux BASICS

At this point, a complete and validated set of policy files is ready. These policy files
should be incorporated into the application RPM and included in the project's source
code control system. Many developers may never need to go much further.

To understand in detail what is taking place, it can help to look at SELinux from the
bottom up.2 SELinux completely separates policy from enforcement. While policies
rest in the hands of developers and system administrators, enforcement is the
kernel's responsibility. At a high level, SELinux is all about labels. Every process, file,
directory, and device on a SELinux system has a label. Objects only are allowed to
access other objects if the SELinux policy allows objects with their labels to interact.
For other object interaction is blocked by the kernel. This is why ensuring that every
object has the appropriate label is critical to correct application behavior in the field.

Problems reported by SELinux reports are due to one of the following:

• Labeling errors by developers or administrators
• A confined process is configured differently than the SELinux policy asserts
• A bug in the policy or application
• The system is compromised

Since there are many different kinds of objects, let's discuss a few that application
developers are most likely to find critical.

Users

SELinux users are not the same as conventional Linux users. For example, consider a
user dwalsh with the SELinux user name staff_u. This definition enables dwalsh to
interact with any objects that are permitted to interact with staff_u.

It should be noted that SELinux users cannot transition during a user session. (This is
unlike the conventional command line, where su foo changes the current user to foo
and sudo enables a user to effectively become root.) While the su command still
“works,” the SELinux user does not change. No matter what identity users assume,
they do not gain additional access. So, for example, if dwalsh:staff_u and
khb:guest are two users on the system, and khb performs su dwalsh, then khb's
SELinux user name would remain guest and khb would be unable to manage or
interact with facilities not available to guest.

2 These fundamentals are adapted from http://selinuxproject.org/page/BasicConcepts and modified by implementation choices
in Red Hat Enterprise Linux 6.

www.redhat.com 6

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

https://access.redhat.com/knowledge/techbriefs/how-build-rpm
https://access.redhat.com/knowledge/techbriefs/how-build-rpm
http://selinuxproject.org/page/BasicConcepts

The discussion of SELinux users is continued, in the context of confined users, later in
this document. Confined users help ensure the administrator of an application does
not also gain permission to tinker with the rest of the production system, but is
limited to only those functions necessary for managing the application.

Roles

SELinux users have one or more roles. What a role means is defined by the system
policy. Typical roles include unprivileged user, web administrator, and database
administrator.In Red Hat Enterprise Linux, these users are mapped to staff_r by
default.

Types

An SELinux type is a way of grouping items based on their similarity from a security
perspective. The type of a process is known as its domain. By convention, these
objects have the _t suffix appended to their name. In short, types are the primary
means for determining access.

Type enforcement file

Each policy module must have a unique name on the system. As a result, editing an
existing policy module must be done carefully, as edits overwrite the existing policy
and remove its rules. Improperly editing a policy module for a fundamental system
service can result in a broken system.

A type enforcement file (.te) is the source code used to control access. It uses a mini-
language based on the traditional m4 macro language. A policy_module macro is
available (and recommended) for authoring policy modules. The macro automatically
brings in the specific system class and associated permissions. If this macro is not
used, a gen_require block must be defined manually.

Within a .te file, all types must be declared or inherited from a gen_require block.
This is analogous to type declarations in a C program, where many system definitions
are inherited via #include files. For example, some of the declarations for myrwhod
include:

type myrwhod_t;

type myrwhod_exec_t;

init_daemon_domain(myrwhod_t, myrwhod_exec_t)

permissive myrwhod_t;

type myrwhod_initrc_exec_t;

init_script_file(myrwhod_initrc_exec_t)

type myrwhod_spool_t;

files_type(myrwhod_spool_t)

www.redhat.com 7

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

Contexts

All processes and objects have a context, known more commonly as a label. This
attribute is used to determine whether a specific type of access should be allowed
between a given process and object. Every SELinux context has three required fields
and one optional field: user:role:type<:MLS range>. If the user, role, and type
fields do not match between the process and object, access is denied (in enforcing
mode) or logged (in permissive mode).

Object classes

SELinux defines a number of classes for objects, facilitating grouping permissions by
specific classes. Examples include classes for file system and network operations.

Categories of objects, such as dir for directories and file for files, are default object
classes provided by SELinux. Each object class has a set of permissions that define
the available ways to access the objects. For example, the file object has create,
read, write, and delete (unlink) permissions associated with it. See
http://selinuxproject.org/page/ObjectClassesPerms for a complete list of object classes
and their permissions.

Classes separate different target objects. The most common classes are:

• file

• dir

• sock_file

• tcp_socket

• process

• capability

• permissions

Permissions differ per class. Errors are generated if there is an attempt to add a
permission that is not defined for the class. Macro definitions are available for higher-
level concepts and should be employed whenever possible. This simplifies policy
generation and maintenance.

file { read write append ... }

process { fork signal sigkill ...}

capability { setuid setgid ... }

Macro definitions

Many permissions are typically required for one domain to read a file.

read_file_perms, manage_sock_file_perms;

www.redhat.com 8

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

http://selinuxproject.org/page/ObjectClassesPerms

Table 1 provides examples.

Table 1: Examples

COMMON FILE PATTERNS

read_files_pattern(httpd_t, etc_t, net_conf_t)

/usr/share/selinux/devel/include/support/obj_perm_sets.spt

MACRO EXAMPLES

define('read_inherited_file_perms', '{ getattr read ioctl lock}'}

define('read_file_perms','{ open read_inherited_file_perms }')

When writing policy by hand, there is a temptation to add permissions one at a time.
This is suboptimal, in that policy violations tend to be code-path dependent. Writing a
policy change, recompiling the policy, and executing a test suite can be a time-
consuming process. Using the provided policy macros is almost always the better
approach.

Generally speaking, policies should be generated by developers and tested to ensure
end users do not experience avoidable application failures. While it is relatively
straightforward to pick appropriate policy macros when one knows the application's
intended use cases, reverse engineering intent from observed behavior can prove
difficult.

Labels

Types of labels include:

• Object classes. These include processes, files ystem, directories, network ports,
devices socket, FIFO, capabilities, and so on. All objects in the operating system
are labeled.

• Security contexts. These are labels that contain SELinux security information.

SELinux policies

Labeling policy describes how objects are to be labeled. Access policy describes how
subjects access objects. Once defined, these policies are compiled into a binary form
and loaded into the kernel, which enforces the policies. A database stores the rules
defined by the SELinux policies in effect. These rules define how a process in one
context is permitted to operate on an object in another context.

Policy rules

Since the primary security mechanism in SELinux is type enforcement, rules are
specified using types for processes and objects.

• dontaudit rules. These rules should be used when an application needs to go
down a different code path. For example, the pam libraries default to trying to
read the /etc/shadow file directly. If denied, the libraries use a helper
application. As a result, the following must be added to allow the code to use the
alternate path without generating active vector cache (AVC)messages:
dontaudit DOMAIN shadow_t:file read; Whenever possible, developers
should employ helper applications. This simplifies the policy-writing task and
makes application intent more transparent.

www.redhat.com 9

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

• allow rules. When editing an existing (or cloned) .te file, it is common to add
allow rules. (The default action is to deny everything.) After defining a new type,
allow rules must be added or attributes that have associated allow rules must be
added, or the type will not be able to do anything.

• neverallow rules. These rules should only be used by distributions. As a result,
they are not discussed in this document.

• auditallow rules. Seldom used, these rules are only for loading a policy or
changing booleans in the distribution policy. While these rules can be used for
auditing, the Linux audit subsystem is a superior solution.

The following policy example allows user_t labeled objects to access their home
directories with full permissions, followed by a rule that allows user_t only to read
files irrespective of the file's read/write permissions.

allow user_t user_home_t:file {create read write unlink}

allow user_t user_home_t:file { read }

Interfaces (policy function calls)

Interfaces are the methods or functions used to interact with module types. When
writing a policy module, avoid using the type of another module. Always use the
module's interfaces. When defining types within a module, a best practice is to define
multiple interfaces to allow other domains to interact with the module's types.

Each policy module should have an interface called DOMAIN_admin that allows a
confined administrator to completely administer the domain.

Interfaces are stored in .if files, such as:

• /usr/share/selinux/devel/include/kernel/files.if

• files_type(shadow_t)

• init_system_domain(rwhod_t, rwhod_exec_t)

• corenet_tcp_connect_mssql_port(httpd_php_t)

• apache_admin(webadm_t)

Attributes

Attributes provide a way to group types. Adding an attribute to a type causes the type
to inherit all the allow and dontaudit rules associated with the attribute. Attributes
can be used in the source or target portion of the SELinux rule. For example:

• attribute file_type

• type etc_t, file_type

• allow rpm_t file_type:file manage_file_perms;

www.redhat.com 10

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

• allow domain self:process fork;

Interfaces used to assign attributes include:

• files_type(etc_t)

• domain_type(httpd_t)

Control writing

A typical attack vector involves writing a file that another process reads. As a result, a
process that owns data should be assigned its own type. In addition, user-level
applications should not be allowed access to system files types, such as:

• etc_t

• usr_t

• var_lib_t

• var_run_t

• root_t

If the data is owned by another domain, the appropriate interface must be used. For
example:

http_sys_content_t use apache_write_content(dictd_t)

In addition, allowing one process to send signals to another process, such as sigkill,
can result in denial-of-service (DoS) attacks. There are times when sending signals
from one process to another is appropriate, such as:

allow guest_t guest_t:process sigkill;

allow guest_t guest_dbusd_t:process sigkill;

Capability class

In striving to limit the power of root, SELinux has defined 34 capabilities at the time of
this writing. These capabilities are listed in the /usr/include/linux/capability.h
file. A best practice is to design applications so they are managed by a contained
user. See
http://www.freetechbooks.com/efiles/selinuxnotebook/The_SELinux_Notebook_The_Fo
undations_3rd_Edition.pdf for more information.

Interface files

All of the policy rules that describe how objects are labeled and are allowed to
transition and interact are encoded as interface files. These files act as the source
code to the policy compilation process. The following examples should be helpful in
making these various concepts concrete.

www.redhat.com 11

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

http://www.freetechbooks.com/efiles/selinuxnotebook/The_SELinux_Notebook_The_Foundations_3rd_Edition.pdf
http://www.freetechbooks.com/efiles/selinuxnotebook/The_SELinux_Notebook_The_Foundations_3rd_Edition.pdf

Example: Making incremental security improvements to an existing
application

Consider the case of making incremental security improvements to an existing
application throughout the release cycle. For many applications, the use of Red Hat
SELinux tools (CLI and GUI) provides the bulk of policy generation required.
Developers should try these tools and become comfortable with the infrastructure
before applying the framework to their application. Organizationally, it can be helpful
to set up a working group that includes test engineers, which allows security policies
to be wired into integration and testing plans to be implemented as policies.

Fortunately, many applications only need to read from--and perform I/O to--a few
directories and use a handful network ports. Ideally, read-only data would be
restricted to one directory with read-write data residing in a separate directory.
Similarly, if there are only a few network ports to permit, restricting all access to
other directories and ports is easy, resulting in a secure application with minimal
design effort. Since Linux developers put a great deal of effort into making startup
daemons and many of the most basic system tools are SELinux-policy friendly, one of
these can serve as an example.

Preparation

Before starting, prepare a special test system or a virtual system that can be
discarded after these experiments. The first step is to add the security tools
packages:

yum install policycoreutils-gui selinux-policy-targeted

Let's take a look at a modified rwho3 daemon (myrwhod4). It is similar to the who
command, but is for users logged into hosts on the local network. The following
sections examine the steps necessary to create, compile, and install the necessary
SELinux security policy. It generates the following files:

• Type enforcement file (.te). This file contains all of the code to implement the
SELinux policy used to confine the application under development.

• File context file (.fc). This file contains the mappings between files and file
contexts.

• Interface file (.if). This file contains all of the interfaces other domains might want
to use to communicate with the domain and file types created by the application
under development.

• Shell script (.sh). This script is used to compile, install, and fix the labeling on the
system under test.

3 See http://www.linuxcommand.org/man_pages/rwho1.html
4 See http://people.fedoraproject.org/~dwalsh/myrwhod/

www.redhat.com 12

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

http://people.fedoraproject.org/~dwalsh/myrwhod/
http://www.linuxcommand.org/man_pages/rwho1.html

Step 1: Download and install the myrwhod RPM5.

$ wget http://people.fedoraproject.org/~dwalsh/myrwhod/myrwho-0.17-

34.el6.i686.rpm

The next set of steps requires superuser status. Rather than constantly typing sudo,
attain superuser privileges.

$ su

Install the demonstration myrwhod package.

rpm -i myrwho-0.17-34.el6.i686.rpm

Verify the installation.

rpm -q myrwho

myrwho-0.17-34.el6.i686

5 We start with the CLI tools, as they are the most natural approach for most developers with an existing application. The
confined users discussion later in this document uses the GUI tools, as the more elaborate choices available are well suited to
GUI prompts. Developers can choose which style of tool to use. Note that the source RPM requires additional infrastructure to
install via rpm -i. For just viewing the code, the easiest approach is rpm2cpio | cpio -idmv.

www.redhat.com 13

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

Step 2: Prepare the system to create a policy module.

Make sure the myrwhod service is installed and functional.

service myrwhod start

service myrwhod status

myrwhod (pid 6883) is running...

myrwho localhost

service myrwhod stop

Create a clean subdirectory for policy generation.

mkdir /root/myrwhod

cd /root/myrwhod

Step 3: Create the initial policy module draft.

The sepolgen command-line tool is used to create a policy template from an existing
executable . Using rwhod as an example:

sepolgen /usr/sbin/rwhod

Generating Policy for /usr/sbin/myrwhod named myrwhod

Loaded plugins: auto-update-debuginfo, presto, refresh-packagekit

Created the following files:/

./myrwhod.te # Type Enforcement file

./myrwhod.if # Interface file

./myrwhod.fc # File Contexts file

./myrwhod.sh # Setup Script

Step 4: Create the final policy module.

This step starts an iterative process: run the application with audit2allow, look for
warnings or errors, and add permissions until warnings cease.

[1] Repeat until no warnings:

Install the generated policy. (This is analogous to a compile and installation step.)

sh ./myrwhod.sh

Building and Loading Policy

+ make -f /usr/share/selinux/devel/Makefile

Compiling targeted myrwhod module

/usr/bin/checkmodule: loading policy configuration from tmp/myrwhod.tmp

/usr/bin/checkmodule: policy configuration loaded

/usr/bin/checkmodule: writing binary representation (version 10) to

tmp/myrwhod.mod

Creating targeted myrwhod.pp policy package

www.redhat.com 14

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

rm tmp/myrwhod.mod.fc tmp/myrwhod.mod

+ /usr/sbin/semodule -i myrwhod.pp

+ /sbin/restorecon -F -R -v /usr/sbin/myrwhod

/sbin/restorecon reset /usr/sbin/myrwhod context system_u:object_r:bin_t:s0-

>system_u:object_r:myrwhod_exec_t:s0

+ /sbin/restorecon -F -R -v /etc/rc.d/init.d/myrwhod

/sbin/restorecon reset /etc/rc.d/init.d/myrwhod context

system_u:object_r:initrc_exec_t:s0-

>system_u:object_r:myrwhod_initrc_exec_t:s0

+ /sbin/restorecon -F -R -v /var/spool/myrwho

/sbin/restorecon reset /var/spool/myrwho context

system_u:object_r:var_spool_t:s0->system_u:object_r:myrwhod_spool_t:s0

[root@RHEL6 myrwhod]#

Run the application with as many varied inputs as required for the supported use
cases:

service myrwhod start

myrwho localhost

service myrwhod status

service myrwhod stop

The myrwhod example is very simple. It uses only a single port, and the code path
is invariant with respect to the myrwho target system. So these are the only use
cases that cover the supported usage (start, lookup, check status, and stop).
Most AVC applications are more complicated, and a full test suite might need to
be run under audit2allow.

View the AVC warning and error output with both the -la and -laR options. Note
that the -R option searches through /usr/share/selinux/devel/include
interface files looking for the best match.

audit2allow -la

#============= myrwhod_t ==============

allow myrwhod_t initrc_var_run_t:file { read lock getattr open };

allow myrwhod_t proc_t:file { read getattr open };

#!!!! This avc can be allowed using the boolean 'allow_ypbind'

allow myrwhod_t rwho_port_t:udp_socket name_bind;

allow myrwhod_t rwho_spool_t:dir search;

#!!!! This avc can be allowed using the boolean 'allow_ypbind'

allow myrwhod_t self:capability net_bind_service;

www.redhat.com 15

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

audit2allow -laR

require {

type myrwhod_t;

class capability net_bind_service;

}

#============= myrwhod_t ==============

#!!!! This avc can be allowed using the boolean 'allow_ypbind'

allow myrwhod_t self:capability net_bind_service;

corenet_udp_bind_rwho_port(myrwhod_t)

init_read_utmp(myrwhod_t)

kernel_read_system_state(myrwhod_t)

rwho_search_spool(myrwhod_t)

Examine the code and see if there is a different approach. For example, if the
audit2allow -la command returned allow abc_t xyz_t:file {read getattr
lock}; yet the only interface in the code was xyz_rw_file() and audit2allow
-laR returned xyz_rw_file(abc_t), it would be preferable to use the raw rules
and develop a new interface, such as xyz_read_file().

Of course, there are more elaborate possibilities. There can be attempts to write
to directories which should not be written to, or the order in which things are
done might be suboptimal. In all cases, avoiding doing something that triggers an
AVC, rather than just allowing it (or suppressing the AVC generation), is the best
approach.

Assuming there are no code changes advisable, add the necessary policy
changes:

audit2allow -laR >> myrwhod.te

By appending the output to the application.te file, additional policy
permissions are added automatically. These permissions are required to allow the
application to run as intended. In the absence of code changes, such additional
policy permissions tend to open up the system more than is optimal. Developers
should seek to change the application rather than simply disabling the AVC
warnings in this fashion.

End repeat loop (return to [1] until AVC messages no longer are produced)

Background about what happens in the above loop can facilitate understanding. The
audit2allow command searches through the installed policy interface files on disk
and attempts to find the best match for the generated AVC messages. These
interface files are installed under the /usr/share/selinux/devel directory. In this
example, the “kernel_read_system_state(rwho_t)” message was found. Note that
any AVC that requires a domain to interact with itself includes the self qualifier.

www.redhat.com 16

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

The tool did not find an interface to match the generated messages:

allow rwho_t initrc_var_run_t:file { read write getattr lock };

Following are the AVCs generated in the /var/log/audit/audit.log file:

type=AVC msg=audit(1184874740.520:1685): avc: denied { read write } for

pid=18340 comm="rwhod" name="utmp" dev=dm-0 ino=3178503

scontext=system_u:system_r:rwho_t:s0

tcontext=system_u:object_r:initrc_var_run_t:s0 tclass=file

type=PATH msg=audit(1184874740.520:1685): item=0 name="/var/run/utmp"

inode=3178503 dev=fd:00 mode=0100664 ouid=0 ogid=22 rdev=00:00

obj=system_u:object_r:initrc_var_run_t:s0

These messages indicate the myrwhod daemon is trying to read and write the
/var/run/utmp file. The library for interacting with the utmp file always attempts to
open the file, and read and write it before falling back to read-only mode. Yet myrwhod
should not be able to write over the utmp file, as it could contain important security
data. Looking in the /usr/share/selinux/devel directories, two calls are found:
init_read_utmp(rwho_t) and init_dontaudit_write_utmp(rwho_t). The first
interface call allows myrwhod to read the utmp file. The second interface call instructs
the kernel to stop generating AVC messages when myrwhod attempts to write to the
utmp file. Changing the code to not write to the utmp file at all is preferable to
disabling AVC messages about failed writes.

Once the policy is working, it can be added to the policy RPM and released to the
testing group. The final SELinux policy source files should be checked into the same
source code repository as the application, and maintained in parallel as the code
evolves. Detailed information on building RPMs can be found at
https://access.redhat.com/knowledge/techbriefs/how-build-rpm.

Finally, study the AVC messages to determine if there ought to be a code change
rather than a policy change. Often, minimizing the number of permissions is possible
with a modest code rewrite. In the example above, adjusting the library to have a
read-only call would be ideal, however, a full treatment is a topic for another paper.

Confined users (RBAC)

SELinux enables users to be confined. By default, a few SELinux user roles are defined
by the system (normal, root, X Window-enabled guest, and CLI-enabled guest).
Similar to the classic RBAC model, the span of control for a user can be curtailed.
Developers should consider whether their application can be managed by an
appropriately confined user, excluding as many system, hardware, and application
controls from the application administrator as possible. If so, appropriate classes
should be incorporated into the system policy as part of RPM installation.

www.redhat.com 17

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

https://access.redhat.com/knowledge/techbriefs/how-build-rpm

For example, consider the case of a confined user with permission to run an
application, alter its configuration files, start and stop the specific services the
application stack requires—yet the user is denied permission to write to any other
system files or control other system or application services. Accomplishing this
requires creating a new user and a bit of policy coding.

For simplicity, assume the application requires MySQL and httpd. Administrators of
this application will need to manage these tools. Of the SELinux user roles provided in
Red Hat Enterprise Linux 6, staff_u comes closest to providing the privileges
required. Let's extend staff_u so that all of the existing (and other) users with this
SELinux label (and with suitable entries in the sudoers file) are able to administer this
application stack as well. This is typically not a concern, because the application stack
often runs in a virtual machine where only the appropriately authorized users and
administrators are staff_u. In a system where finer control over users is required,
more elaborate policy can be written for an entirely new SELinux user.

Create a new SELinux user using selinux-polgengui.

Since an executable or init script is not needed to create the new user, those items
can remain blank.

www.redhat.com 18

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

The new user must be assigned a role. Using the standard roles provided, select
shutdown. This allows the application's administrator to reboot the system, if
necessary.

As shown in the next pane, assign newadmin to the existing SELinux role staff.

The next several panes deal with network port restrictions. This example grants
permission to all ports. In most applications, the confined administrator usually only
needs access to a few ports.

Next, generate the policy into a new directory.

www.redhat.com 19

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

CONFINED USER REFERENCES

Confining Users with Predefined

SELinux Security Policies in Red Hat

Enterprise Linux 6

https://access.redhat.com/knowledge/

sites/default/files/attachments/confini

ng_users_with_selinux_in_rhel_6_0.pd

f

Video presentations that explain the

consequences of inappropriate

policies:

https://access.redhat.com/knowledge/

videos/214723

https://access.redhat.com/knowledge/

videos?

title=&field_vid_reference_product_ti

d=All&page=5

https://access.redhat.com/knowledge/sites/default/files/attachments/confining_users_with_selinux_in_rhel_6_0.pdf
https://access.redhat.com/knowledge/sites/default/files/attachments/confining_users_with_selinux_in_rhel_6_0.pdf
https://access.redhat.com/knowledge/sites/default/files/attachments/confining_users_with_selinux_in_rhel_6_0.pdf
https://access.redhat.com/knowledge/videos?title=&field_vid_reference_product_tid=All&page=5
https://access.redhat.com/knowledge/videos?title=&field_vid_reference_product_tid=All&page=5
https://access.redhat.com/knowledge/videos?title=&field_vid_reference_product_tid=All&page=5
https://access.redhat.com/knowledge/videos/214723
https://access.redhat.com/knowledge/videos/214723

This generates the necessary policy source files.

The following shows policy compilation and installation.

sh ./new

admin.sh

Building and Loading Policy

+ make -f /usr/share/selinux/devel/Makefile

Compiling targeted newadmin module

/usr/bin/checkmodule: loading policy configuration from tmp/newadmin.tmp

/usr/bin/checkmodule: policy configuration loaded

/usr/bin/checkmodule: writing binary representation (version 10) to

tmp/newadmin.mod

Creating targeted newadmin.pp policy package

rm tmp/newadmin.mod.fc tmp/newadmin.mod

+ /usr/sbin/semodule -i newadmin.pp

+ /usr/sbin/semanage user -a -R 'newadmin_r staff_r system_r' newadmin_u

+ '[' '!' -f /etc/selinux/targeted/contexts/users/newadmin_u ']'

+ cat

www.redhat.com 20

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

Having created the policy, create the new administration user and prepare it for use.

useradd -Z newadmin_u newadmin

passwd newadmin

Changing password for user newadmin.

passwd: all authentication tokens updated successfully.

The final step is to edit the sudoers file to allow newadmin to become
newadmin_r:newadmin_t when run as root.

visudoer

newadmin ALL=(ALL) ROLE=newadmin_r TYPE=newadmin_t ALL

Confining users is a useful technique. Confined users can be used to limit
administrative or normal user access to the minimum amount of access a specific
user role requires, whether it be access to applications, devices, or ports.

Confined applications

Just as SELinux enables user roles to be locked down, applications can also be
confined. The basis for these confinement techniques are SELinux transitions—a
mechanism that allows labeling rules to specify the way a target type transitions. For
example, file transitions consist of statements, such as: “When a process labeled
dictd_t creates a file or directory in a directory labeled var_run_t, the file or
directory should be created with the dictd_var_run_t type.” This statement is
encoded as follows:

filetrans_pattern(dictd_t, var_run_t, { file dir }, dictd_var_run_t)

When a confined application tries to execute a file with a DOMAIN_exec_t label,
execution can occur in two ways. The domain can execute in the current label or
transition to another domain. For example, assume audit2allow generated the
following allow rule when dictd tried to execute a file labeled sendmail_exec_t;

allow dictd_t sendmail_exec_t:file { execute read ...

The sendmail command can run as dictd_t using can_exec(dictd_t,
sendmail_exec_t). Alternatively, the command can transition to the full sendmail
domain using sendmail_domtrans(dictd_t), which runs sendmail as sendmail_t;.

Application developers should strongly consider confining their applications. Most
applications should have a fairly small set of SELinux transitions that need to be
permitted.

www.redhat.com 21

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

SELinux modules

While policy modules can be written by hand using checkmodule and semodule_link,
a Makefile is provided that simplifies the policy module compilation process and
reduces the likelihood of error. The Makefile is executed using the make command:

make -f /usr/share/selinux/devel/Makefile

The policy module can be installed using the semodule -i DOMAIN.pp command. This
command typically takes several seconds to execute, as it compiles and verifies the
entire policy (not just changes) and loads the policy module into the system.

Installing policy modules that include file context files results in modification of the
default file context on the system. Note that the file context is not applied to the file
system. The restorecon command must be used to modify the extended attributes
on the file system. A complete sequence is shown below.

make -f /usr/share/selinux/devel/Makefile

semodule -i dictd.pp

restorecon -R /var/run/dictd.pid

The first line installs the policy into the system, and the second line assigns the
appropriate file contexts. More information on packaging can be found in the shipping
policies for Red Hat Enterprise Linux located at
http://danwalsh.livejournal.com/49762.html. Typically, policies must be compiled for
each major Red Hat Enterprise Linux release to be supported. Packaging SELinux
policies for Fedora distributions are available at
https://fedoraproject.org/wiki/SELinux_Policy_Modules_Packaging_Draft.

Workflow

After the initial policy is drafted, compiled, installed, and has labels applied, the
project is ready for preliminary quality assurance (QA) testing. A best practice is
testing the application using test suites running in permissive mode. During
execution, AVC messages are generated and stored in the
/var/log/audit/audit.log file. An example of this iterative process can be found
earlier in this document.

CONCLUSION

Developers should provide default policy source and precompiled files as part of an
RPM distribution. The policy should typically include user and application confinement
as appropriate.

Including policy source and scripts as part of the RPM allows system administrators to
maintain the security of their system with minimal additional manual overhead.
Maintaining appropriately limited permissions for each and every application running
on a production system is required to keep datacenters secure. Relying on the system
administrator to determine what an application's intent is, or what all of the
supported use cases are, is an unreasonable burden to place upon system
administrators.

www.redhat.com 22

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

https://fedoraproject.org/wiki/SELinux_Policy_Modules_Packaging_Draft
http://danwalsh.livejournal.com/49762.html

FOR MORE INFORMATION

More information on SELinux can be found at:

• Dan Walsh's blog: danwalsh.livejournal.com
• Red Hat Enterprise Linux 6, Security-Enhanced Linux User Guide, Edition 3

https://access.redhat.com/knowledge/docs/en-
US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/index.html

• Red Hat videos: http://www.redhat.com/sourcelibrary/videos
• SELinux by Example, Prentice Hall

http://www.informit.com/store/selinux-by-example-using-security-enhanced-linux-
9780131963696

• The SELinux Notebook, Second Edition,
http://freecomputerbooks.com/The-SELinux-Notebook-The-Foundations.html

• https://access.redhat.com/knowledge/videos?
title=&field_vid_reference_product_tid=All&page=5

About the author

Dan Walsh has over 30 years of experience in the computer field. He has spent the
majority of his career working on security applications and platforms, including the
Athena Project at Digital Equipment Corporation, the AltaVista Firewall and AltaVista
Tunnel (VPN) products, HackerShield (a vulnerability assessment solution) and
BVControl for UNIX. At Red Hat, Dan has led the SELinux project, concentrating mainly
on the application space and policy development. Dan graduated with a B.A. in
Mathematics from the College of the Holy Cross and an M.S. in Computer Science
from Worcester Polytechnic Institute.

www.redhat.com 23

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

https://access.redhat.com/knowledge/videos?title=&field_vid_reference_product_tid=All&page=5
https://access.redhat.com/knowledge/videos?title=&field_vid_reference_product_tid=All&page=5
http://freecomputerbooks.com/The-SELinux-Notebook-The-Foundations.html
http://www.informit.com/store/selinux-by-example-using-security-enhanced-linux-9780131963696
http://www.informit.com/store/selinux-by-example-using-security-enhanced-linux-9780131963696
http://www.informit.com/store/selinux-by-example-using-security-enhanced-linux-9780131963696
http://www.informit.com/store/selinux-by-example-using-security-enhanced-linux-9780131963696
http://www.redhat.com/sourcelibrary/videos
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/index.html
http://danwalsh.livejournal.com/

ADDENDUM

SELinux sandboxing

While not part of the default installation, sandboxing6 is supported by SELinux.
System administrators can install the sandbox policycoreutils-sandbox package with
the Add/Remove Program GUI dialog or via command line:

sudo yum install policycoreutils-sandbox

Applications that do not have policies defined, or are difficult to tightly confine, can
be executed in the sandbox with the following command:

sandbox $app-name

Applications that need permissions beyond simple reading and writing to stdin and
stdout, or those that are handed other file descriptors, can use the -M (mount) and -X
(window system support) options. See the sandbox(8)man page for detailed
information. For example, the sandbox -X firefox command can be used for a web
browser that is used locally. It results in a web browser running in a sandboxed
window that cannot connect to outside sites. Web access can be allowed using the
sandbox -X -t sandbox_web_t firefox command.

A recommendation is to develop applications so they do not need to run in a sandbox.
If a sandbox is required during initial efforts to make an application secure,
development and test organizations should test and document the sandbox openings
that are required. Appropriate policies and scripts should be provided to keep users
safe by default.

More information on sandboxing can be found at
http://danwalsh.livejournal.com/31146.html.

For historical perspective, the sandbox facility was introduced by the author. See
http://danwalsh.livejournal.com/28545.html,
http://danwalsh.livejournal.com/31146.html, and
http://people.fedoraproject.org/~dwalsh/SELinux/Presentations/sandbox.pdf for more
information.

6 Sandboxing is the process of taking an application not designed to be secure, and putting it into a sandbox. A sandbox is an
area with a special limited permission state. Using a sandbox ensures the rest of the system is protected from the activity of
the sandboxed object or application. See http://en.wikipedia.org/wiki/Sandbox_(computer_security) .

www.redhat.com 24

 WHITEPAPER SELinux FOR RED HAT DEVELOPERS

http://people.fedoraproject.org/~dwalsh/SELinux/Presentations/sandbox.pdf
http://danwalsh.livejournal.com/31146.html
http://danwalsh.livejournal.com/28545.html
http://danwalsh.livejournal.com/31146.html
http://en.wikipedia.org/wiki/Sandbox_(computer_security

ABOUT RED HAT Red Hat was founded in 1993 and is headquartered in Raleigh, NC. Today,
with more than 60 offices around the world, Red Hat is the largest publicly
traded technology company fully committed to open source. That
commitment has paid off over time, for us and our customers, proving the
value of open source software and establishing a viable business model built
around the open source way

SALES AND INQUIRIES

NOTE TO DESIGNER: PLEASE
PROVIDE THE CORRECT
CONTENT HERE

NORTH AMERICA

1–888–REDHAT1

www.redhat.com

EUROPE, MIDDLE EAST

AND AFRICA

00800 7334 2835

europe.redhat.com

europe@redhat.com

ASIA PACIFIC

+65 6490 4200

apac.redhat.com

apac@redhat.com

LATIN AMERICA

+54 11 4329 7300

latam.redhat.com

info-

latam@redhat.com

www.redhat.com Copyright © 2013 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, and
RHCE are trademarks of Red Hat, Inc., registered in the U.S. and other countries. Linux® is the registered trademark
of Linus Torvalds in the U.S. and other countries.

	How to use selinux policies to enhance datacenter security
	How to use selinux policies to enhance datacenter security 1
	The Need for Security 3
	A look back at the roots of selinux 3
	Working with SELinux 4

	architectural Considerations 5
	Nuts and bolts of selinux 5
	Selinux basics 6
	Users 6
	Roles 7
	Types 7
	Type enforcement file 7
	Contexts 8
	Object classes 8
	Labels 9
	SELinux policies 9
	Policy rules 9
	Interfaces (policy function calls) 10
	Attributes 10
	Control writing 11
	Capability class 11
	Interface files 11

	Example: Making incremental security improvements to an existing application 12
	Preparation 12
	Step 1: Download and install the myrwhod RPM. 13
	Step 2: Prepare the system to create a policy module. 14
	Step 3: Create the initial policy module draft. 14
	Step 4: Create the final policy module. 14
	Confined users (RBAC) 17
	Confined applications 21
	SELinux modules 22

	Workflow 22

	Conclusion 22
	For more information 23
	About the author 23

	Addendum 24
	SELinux sandboxing 24

	The Need for Security
	A look back at the roots of selinux
	Working with SELinux

	architectural Considerations
	Nuts and bolts of selinux
	Selinux basics
	Users
	Roles
	Types
	Type enforcement file
	Contexts
	Object classes
	Labels
	SELinux policies
	Policy rules
	Interfaces (policy function calls)
	Attributes
	Control writing
	Capability class
	Interface files
	Example: Making incremental security improvements to an existing application
	Preparation
	Step 1: Download and install the myrwhod RPM5.
	Step 2: Prepare the system to create a policy module.
	Step 3: Create the initial policy module draft.
	Step 4: Create the final policy module.
	Confined users (RBAC)
	Confined applications
	SELinux modules
	Workflow

	Conclusion
	For more information
	About the author

	Addendum
	SELinux sandboxing

