

Performance Tuning JBoss
AS 6

AS Tuning

• Connection pooling.
• Thread pools.
• Object/component pools.
• Logging.
• JVM Tuning.

Connection Pooling

Database connections are expensive to
setup and tear down...
– I have seen applications that created new

connections with every query or transaction, and
then closed that connection.

– You should monitor your connection usage to
determine proper sizing.

– You can monitor the connection pool utilization
from the admin console as well as with database
specific tools.

Example Data Source
<datasources>

 <local-tx-datasource>

 <jndi-name>MySQLDS</jndi-name>

 <connection-url>jdbc:mysql://[host]:3306/[database]</connection-url>

 <driver-class>com.mysql.jdbc.Driver</driver-class>

 <user-name>someuser</user-name>

 <password>somepassword</password>

 <exception-sorter-class-
name>org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter</exception>

 <min-pool-size>75</min-pool-size>

 <max-pool-size>100</max-pool-size>

 <prefill>true</prefill>

 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>

 <prepared-statement-cache-size>100</prepared-statement-cache-size>

 <share-prepared-statements>true</share-prepared-statements>

 </local-tx-datasource>

</datasources>

Thread Pooling

Thread pools need to be sized appropriately for the
workload...

– The httpd thread pool in JBoss Web is defined in server.xml
file under <server>/deploy/jboss-web-sar.

– Used when making HTTP requests directly to EAP.

– The AJP thread pool is also defined in the same file, just in
its connector section.

– Used when making HTTP requests through mod_jk.

– When using mod_cluster, you setup a listener in JBoss Web,
but it uses the AJP and/or HTTPD connector, and
corresponding thread pool.

Thread Pooling

Thread pools need to be sized appropriately for the workload...

– The JCA thread pool is used in conjunction with JMS.
• This can be configured in <server>/deploy/jca-jboss-

beans.xml, and is called WorkManager thread pool.

– There is also a TCP thread pool for remote clients.
• For those remote clients, the thread pool is specified in

<server>deploy/remoting3-jboss-beans.xml.

• There is now only one configuration for remote clients, versus
one for each type of component, such as remote JMS clients,
remote EJB 3 clients, etc.

Object/Component Pools

There are a variety of other pools that need to be sized...

– For EJB 3, there are pools defined in the ejb3-
interceptors-aop.xml. You fine this file in
<server>/deploy.
• There are two types of pools for EJB 3, one is called the

ThreadLocalPool, and the other is called the
StrictMaxPool.

• The defaults are for Stateless and Stateful Session
Beans to use the ThreadLocalPool.

• The defaults for Message Driven Beans is the
StrictMaxPool.

• These pools can be monitored through the JMX console.

Logging

• The default configuration is appropriate for
development, but not for a production
environment...
– In the default configuration, console logging is

enabled.

– In a production environment, console logging is
very expensive.

– Turn down the verbosity level of logging if its not
necessary.
• The less you log, the less I/O will be generated, and the

better the overall throughput will be.

Logging Continued

• New JBoss Logging implementation.
– Configured in deploy directory (not conf), and

was designed to meet performance and
usability requirements.

– Most log statements don't have to be wrapped
with ifXXXEnabled()...
• Those boolean checks are still there for the

cases where the construction of the log
statement is expensive.

JVM Tuning

• Use large memory page support (HugeTLB in Linux).
– Default memory page size is typically 4KB.

– Large memory page support usually starts with 2MB
memory pages, and can be as large as 256MB on
some architectures.

– All the major JVM's support large memory pages on
Linux.

– Besides the system overhead of mapping so many
memory pages, large memory pages on Linux cannot
be swapped to disk.

JVM Tuning Continued

• Use large memory pages with the 64-bit JVM.

– Use the 64-bit JVM whenever you have a more
than 4GB of memory available to you.
• Large page memory is not available on the 32-bit JVM.

• RHEL does let you allocate large pages on the 32-bit OS,
but you get an illegal argument when starting the JVM.

• The Sun JVM, as well as OpenJDK, requires the
following option, passed on the command-line, to use
large pages:
– -XX:+UseLargePages

JVM Tuning Continued

• Turn on aggressive optimizations.

– -XX:+AggressiveOpts.
• This option on the Sun and OpenJDK 1.6 JVM's turns on

additional HotSpot optimizations that have yet to be made
default.

• Reduced response times on my test workload by 8%.

• Use Escape Analysis with an EJB 3 workload.

– -XX:+DoEscapeAnalysis.
• Not a general optimization that I would rely on for anything

outside of the EAP without testing it first.
– Escape Analysis determines if objects are accessed in multiple threads or a

single thread. If a single thread, then it “escapes” the object making it local.

– This has the affect of reducing locking in many cases (improving multi-core
throughput), and reducing garbage collection overhead.

– Reduced response times by 40% on my test workload!!!!

JVM Tuning Continued

• So, what about the 32-bit vs. 64-bit
JVM?
– So, I did some simple workload testing to

compare the two.
– Nehalem 8 core system with 16 GB's of

RAM, and Hyper-threading turned on.
• Looks like a 16 CPU system to the OS.

NUMA

• The latest x86_64 systems from Intel,
and all the AMD systems are NUMA.

• JVM supports NUMA.
– -XX:+UseNUMA

• On Linux start the JVM via numactl.
– Lots of options to pin the JVM process to

specific NUMA nodes, etc.
–We have seen improvements in

experiments.

Q&A

	logo slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

