
Boston:2010
JBoss Users & Developers Conference

Wednesday, June 23, 2010

Zen of Class Loading
Jason T. Greene
EAP Architect, Red Hat
June 2010

Wednesday, June 23, 2010

What is the Class class?

•Represents a class, enum, interface, annotation, or
primitive marker in the JVM

• Allocates memory in both heap and permanent
generation

•Is always referenced by every object instance of the
Class

•Unique (by name) only to a ClassLoader

•Holds a reference to its ClassLoader

Wednesday, June 23, 2010

What is a ClassLoader?

•Responsible for loading classes

•Holds a strong reference to all classes it loads

•Has an optional parent for delegating

•Serves as an SPI for custom loaders

•Provides a byte buffer of class bytecode to the JVM

Wednesday, June 23, 2010

Class, Object, and ClassLoader reference pattern

Class A Class B Class C

ClassLoader Object
C(2)

Object
C(1)

Wednesday, June 23, 2010

Understanding Uniqueness

URLClassLoader cl1 =
 new URLClassLoader(foo1Jar, null);
URLClassLoader cl2 =
 new URLClassLoader(foo2Jar, null);

Class fooClass1 = cl1.loadClass("Foo");
Class fooClass2 = cl2.loadClass("Foo");

fooClass1.equals(fooClass2) // FALSE!

Wednesday, June 23, 2010

Classloader Uniqueness (Isolation)

Class
Foo:1

ClassLoader
foo1.jar

!=
Object
Foo:1

Class
Foo:2

ClassLoader
foo2.jar

Object
Foo:2

Wednesday, June 23, 2010

Loading by Reference vs ClassLoader

•Normal direct references by a class to another class
reuses the referencing class’ ClassLoader.

// Load using the cl1 loader
Class fooClass1 = cl1.loadClass("Bob");

// Reuses the loader for this class.Equiv to
// getClass().getClassLoader().loadClass()
Bob bob = new Bob();
Class bar = Bar.class;

Wednesday, June 23, 2010

Problem #1 - OutOfMemory:PermGen

•Too many Classes were loaded!

•Sizing could be wrong

•Big application with many classes

•Possible Classloader leak
•Hot Deployment creates new Classloaders on redeploy
•Old loaders are intended to be GC’d

•Anything with a direct or indirect reference to a loader
will cause it to leak

Wednesday, June 23, 2010

Not Collectable!

Permanent Generation

ClassLoader Leak

Class A Class B Class C

Classloader

 Unintentional
Reference

Object
C(1)

Wednesday, June 23, 2010

Common Leak Sources

•Static field on a class with a long lifecycle

•Caching frameworks

•Persistent Thread-locals

•Automatic cleaning is extremely infrequent

•Framework bugs
•Logging frameworks, third-party frameworks etc

Wednesday, June 23, 2010

JDK Class Loading Delegation (Parent First)

Extension Loader

Application
Loader

User Loader 1 User Loader 2

Boot Classpath
1. 2.

3.

4.

1-4 = User CL Search Order

Wednesday, June 23, 2010

JDK Class Loading Delegation

•Parent-first prevents overriding a parent

•Custom classloaders can change this

•and they do!

•Bootstrap is searched even if parent == null

•Bootstrap classes often return null for getClassLoader()

Wednesday, June 23, 2010

Problem #2 - ClassNotFoundException

•Classes are not visible to the loader

•Variety of causes

•Unintentional reference/dependency
•Reference from a parent to a child or a sibling to another

sibling (only children can see parent’s classes)
•Ex. A jar in ear/lib accesses a class in a WAR

•Solutions

•Audit cross jar references (e.g Tattletale)
•Draw out how they should fit in the CL tree

Wednesday, June 23, 2010

EE Class Loading Model (Child First)

EAR ClassLoader

EJB Jars EAR Libs

WAR
ClassLoader1

Web1.war

War LibsWar Libs

WAR
ClassLoader2

Web2.war

War LibsWar Libs

EE App Server
ClassLoader

1.

2. 3.

JDK
ClassLoaders

4.

RAR

EE APIs

Wednesday, June 23, 2010

EE Class Loading Model

•Child-first allows deployments to override parent
classes and jars
•Common use-case is supporting bundling a war that

needs a different version of a framework than the EAR

•EJB jars share classes within the EAR

•WARs do not share classes, but do share classes in
the EAR

•RARs and Global EJB-JARs visible to everyone

Wednesday, June 23, 2010

Problem #3 - ClassCastException on same name

•Duplicate classes in isolated loaders!

•Usually a packaging problem

•Common scenario - bundling ejb local interfaces in a
WAR

•The WAR ClassLoader’s version is passed to the EJB,
which has the EAR ClassLoader’s version

•The classes are not equal, so CCE
•Also happens with containers that support pass-by-ref

optimizations on Remote interfaces (JBoss does)

Wednesday, June 23, 2010

Solutions to ClassCastException

•Look for duplicate jars in your EAR and nest WARs

•Remove extra copies in the WAR or disable call-by-ref
optimization if remote interfaces are used

•Disable WAR isolation if the container supports it (not
recommended)

Wednesday, June 23, 2010

Domain Based Models (Historic JBoss CL)

Domain 1

JAR
ClassLoader

EJB
ClassLoader

JAR
ClassLoader

EJB
ClassLoader

Domain 2

JAR
ClassLoader

EJB
ClassLoader

JAR
ClassLoader

EJB
ClassLoader

Shared
Class Cache

Shared
Class Cache

Wednesday, June 23, 2010

Domain Based Models

•Hot deploy requires a ClassLoader per deployment

•However normal class loader isolation disallows pass-
by-reference (ClassCastException)

•Domains allow class sharing between class loaders

•Duplicate classes are resolved using first-come-first-
serve

•Allows big ball-of-mud

•Domains can also be hierarchical

Wednesday, June 23, 2010

Evolution to Module Class Loaders

•Applications don’t always fit hierarchical models

•Allowing usage of different versions of library
traditionally requires copying the jar to a local class
loader

•Cross jar references in a traditional model are not
always clear
•Changes to structure often have unintended side effects

Wednesday, June 23, 2010

Evolution to Module Class Loaders (cont)

•Modules move the reference behaviors to be per jar

•Dependencies are expressed on a name and a version
•Module system responsible for mapping everything

Wednesday, June 23, 2010

Module ClassLoader Models

widget.jar 1.1
Module Definition

Imports

Exports

render.jar 1.3

stats.jar 1.2

org.widget.api

app.jar 3.1

Module Definition

Imports

Wednesday, June 23, 2010

OSGi Class Loading

•ClassLoader per bundle for hot deploy

•Supports a complex combination of bundle and
package inclusion.
Bundle-Name: widget
Bundle-Version: 1.1
Require-Bundle: render;
 bundle-version="1.3"
Require-Bundle: stats;
 bundle-version="1.2"
Import-Package: org.extra;version=”1.4”
Export-Package: org.widget.api

Wednesday, June 23, 2010

JBoss AS5 ClassLoader

•Also supports package and module import/export

<classloading xmlns="urn:jboss:classloading:1.0">
 <capabilities>
 <module name="widget" version=”1.1”/>
 <package name=”org.widget.api”/>
 </capabilities>
 <requirements>
 <module name="render" version=”1.3”/>
 <module name="stats" version=”1.2”/>
 </requirements>
</classloading>

Wednesday, June 23, 2010

JBoss AS5 ClassLoader

•Module descriptor can be placed in any deployment

•Will override EE rules

•Also supports domain style loaders

<classloading xmlns="urn:jboss:classloading:1.0"
 domain="IsolatedDomain"
 parent-domain="DefaultDomain"
 parent-first="false">
</classloading>

Wednesday, June 23, 2010

Future of Class Loading

•JDK7 probably adopting modules

•Project jigsaw - JSR294
•JDK itself will become modularized

•EE7 will likely follow suit
•Modularized EE Deployments
•Modularized Application Servers

Wednesday, June 23, 2010

