

Elastic SOA on the Cloud
Steve Millidge (C2B2)

About Me
• Founder of C2B2

– Red Hat Partner
– Deep Expertise in Middleware
– Non-functional Experts

• 20 Years Middleware Expertise
• 15 years Field Consultancy
• Organiser of JBUG London

– http://www.meetup.com/JBoss-User-Group/

Agenda

• SOA Reprise
• Cloud Reprise
• Why SOA on the Cloud?
• JON Overview
• Deploying ESB for Elasticity
• Service Deployment Options

SOA Reprise

Typical SOA Architecture

JBoss Enterprise Service Bus

jBPM BAM

System 1 System 2 System 3 System 4

Typical ESB Service

Components
• Inbound Listener

– JMS, File, FTP, Web
Service, HTTP(s) …

• Action Pipeline
– Transformation, Routing,

Process Coordination,
Auditing, Aggregation

• Outbound Protocol
– Calls System Business

Logic
– EJB, Web Service …

Action Pipeline

Inbound Listener

Outbound Protocol
(JMS, HTTP, REST)

Service Definition
<?xml version = "1.0" encoding = "UTF-8"?>
<jbossesb

xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/sche
mas/xml/jbossesb-1.0.1.xsd" invmScope="GLOBAL">

<services>
 <service category="Retail" name="ShoeStore" description="Acme Shoe

Store Service">
 <actions>
 <action name="println"

class="org.jboss.soa.esb.actions.SystemPrintln" />
 </actions>
 </service>
</services>

</jbossesb>

Cloud Reprise

Infrastructure As A Service

Virtual
Image
Store

ServerServerServerDatabase
Load Balancer

Amazon EC2

EC2 Core Features
• AMI
• Instance

– Spot, On-Demand,
Dedicated

• Volumes
– Snapshots

• Security Groups
• Load Balancers
• Elastic IPs

Peripheral Services
• Cloud Front
• Cloud Watch
• Cloud Formation
• RDS
• VPC
• Elastic Beanstalk

Starting an Instance
From Java

String imageID = “ami-xxxxxx”;
String minInstances = 3;
String maxInstances = 3;

RunInstancesRequest request = new
RunInstancesRequest(imageID,minInstances, maxInstances);

AmazonEC2Client client = new AmazonEC2Client(new AWSCredentials(…));

RunInstancesResult result = client.runInstances(request);

Amazon Instance Types
Instance Type Memory (GB) CPU (ECU) Cost per Hour
Standard Small 1.7 1 $0.095
Standard Large 7.5 4 $0.38
Standard XL 15 8 $0.76
High Mem XL 17 6.5 $0.57
High Mem DXL 34.2 13 $1.14
High Mem QXL 68.4 26 $2.28
High CPU Med 1.7 5 $0.19
High CPU XL 7 20 $0.76
Cluster 23 33.5 $1.60
Micro .613 2 (burstable) $0.025

Why SOA on the Cloud?

Cloud Integration
Cloud

Data Centre

JBoss ESB

Data Apps

SAAS
SalesForce

SAAS
Zen Desk

JBoss JBoss

Cloud Bursting
Cloud Data Centre

Service
Instance

Service
Instance

Service
Instance

Service
Instance

Service
Instance

Service
Instance

Challenges to Elasticity
• Networking

– IP Addresses, Firewalls
• Service Discovery

– New Capacity needs to be utilised
• Clustering

– New servers must cluster
• Monitoring

– Monitoring Tools must discover new servers
• Application Architecture

– Elastic Aware

How to Do Elasticity

• Know Your
Scalability

• Know What Limits
Scalability

• Measure the
Limiting Factors

• Alert on Metrics
• Add Additional

Capacity

Users

Cluster Nodes

JBoss Operations Network
(RHQ)

What is RHQ

The RHQ project is a systems management
suite that provides extensible and integrated
systems management for multiple products
and platforms across a set of core features

such as
• monitoring and graphing of values
• alerting on error conditions
• remote configuration of managed resources
• remote operation execution

RHQ Architecture
RHQ

Server

DB

RHQ
Agent

RHQ
Agent

JBoss
Server

RHQ
Agent

JBoss
Server

RHQ Agent

• Installed on each
machine

• Discovers machine
Inventory

• Can access local
processes

• Gathers native metrics
from the OS.

• Stores metrics during
server outage

RHQ Agent
Plugin

•Monitoring
•Discovery
•Availability
•Scheduling
•Control

Plugin
•Monitoring
•Discovery
•Availability
•Scheduling
•Control

SIGAR
Native OS Statistics

RHQ Server
• Stores Data Received

From Agents
• Updates Agents
• Sends Commands to

Agents
• Raises Alerts
• Provides Portal
• Provides Web Services

and WebDAV interface
• Provides CLI Interface
• Provides Security

RHQ Server

Database

Portal Web
Services

Web
DAV

Content Monitor Alert

Configure Control Inventory

RHQ and JBoss ESB

• Key Service Metrics
– Message Count (Success)
– Message Count (Failed)
– Processed Bytes

• Key Action Metrics
– Processing Time
– Message Counts (Average Per Minute)

Key JBoss Metrics

• Key JBoss Metrics
– JVM Free Heap
– GC Time
– Servlet Response Time/ Response Rates
– Connection Pool Utilisation

• Key System Metrics
– CPU Usage
– Network Utilisation

Alerting in RHQ

• Alerts can be set on any metric
• Alerts can be set on Availability
• Alerts are sent by the Server from filtering

the metric stream
• Alert Notification is configurable and

Extensible
• Alerts can trigger operations on a resource
• Alerts can trigger Script Actions

Alerting and Elasticity
Cloud

Agent

JBoss
ESB

RHQ
Server

RDS

Message Count

Alert

ec2Client.
runInstances

Agent

JBoss
ESB

Deploying ESB For Elasticity

Invoking a Service

Service Invocation
ServiceInvoker invoker = new ServiceInvoker(“Retail”, “ShoeStore”);

Message message = MessageFactory.getInstance().getMessage();

message.getBody().add(“Hi there!”);

 invoker.deliverAsync(message);

JBoss ESB Registry Service

• The registry plays a central role within JBoss
ESB for the deployed services
– The purpose of the registry is to record services, discover meta-

data and classify entities into pre-defined categories
– It may be updated dynamically, when a services first starts or

statically by an external administrator

• The default configuration uses Apache jUDDI
v3 as its UDDI registry

• JBoss ESB Registry is based on Apache
Scout a JAXR implementation

JBoss ESB UDDI Browser

Service Registration
JBoss ESB

JUDDI

Action Pipeline

Action Pipeline

EPR
jms://queue:@host1

EPR
jms://queue:@host1

JBoss ESB

Action Pipeline

Action Pipeline

EPR
jms://queue:@host2

EPR
jms://queue:@host2

Service Discovery
JBoss ESB

Action Pipeline

EPR
jms://queue:@host

JBoss ESB

Action Pipeline

EPR
jms://queue:@host

ESB
Client

JUDDI

Lookup(“Retail”,”ShoeStore”)

Send JMS

Send JMS

Cloud

UDDI on Amazon

JUDDI
Amazon RDS

JBoss ESB
Embedded UDDI

JBoss ESB
Embedded UDDI

ESB
Client

Elastic Loadbalancer

SOAP

JMS and Services

• JBoss ESB is JMS Based
• Remote Services have JMS Endpoints

– For ESB Aware
• Service Invoker retrieves JMS EPR
• Service Invoker enqueues Message

ESB JMS Options

Server 1

JMS DB
(Shared)

Server 2

JBoss ESB JBoss ESB

Queue QueueCluster

Clustered JMS

Server 1

JMS DB
(Local)

JBoss ESB

Queue

Local JMS

Server 2

JMS DB
(Local)

JBoss ESB

Queue

Local JMS Advantages

• Load Balancing Performed by Service
Invoker

• Performance Improved
• Each Node Stand Alone
• No HA Database Required
• Use Local MySQL stores
• Enables Elasticity

Elastic SOA Architecture
Server 1

JMS DB
(Local)

JBoss ESB

Queue

Server 2

JMS DB
(Local)

JBoss ESB

Queue

UDDI (Global, MultiAV RDS)

Server 3

JMS DB
(Local)

JBoss ESB

Queue

Server 4

JMS DB
(Local)

JBoss ESB

Queue

jms://server1 jms://server2

jms://server3 jms://server4

Service Deployment Options

Service Deployment
Homogenous

Server 1 Server 2 Server 3 Server 4

S
ervice 1

S
ervice 2

S
ervice 1

S
ervice 2

S
ervice 1

S
ervice 2

S
ervice 1

S
ervice 2

Homogenous Deployment

Advantages
• Easy Management
• Easy Deployment
• Simple Scaling
• Enables All inVM

Processing
• Easier to Test on single

server

Disadvantages
• Doesn’t take into account

usage patterns
• Can’t Scale Services

Independently
• Encourages Monolithic

Deployment
• Encourages tight service

coupling

Heterogeneous Deployment

High
Compute
1

High
Compute
2

High
Memory 1

H
igh M

em
ory S

ervice

High
Memory 2

H
igh M

em
ory S

ervice

High
Memory 3

H
igh M

em
ory S

ervice

Heterogeneous Deployment

Advantages
• Each Service can be

independently Tuned
• Each Service can be

independently scaled
• Services don’t impact

each other
• Services can be

independently upgraded
• Encourages loose

service coupling

Disadvantages
• More Complex

Deployment
• More Complex

Management
• Development more

complex
• Calls are remote across

services

Summary

• JBoss ESB’s Architecture Enables
Elasticity using IAAS

• JON Alerting can be used to Elastically
Scale services

• Centralised UDDI enables Service
Discovery across the cloud

• Centralised UDDI Enables
Heterogeneous Deployment

